Na,K-ATPase inhibition alters tight junction structure and permeability in human retinal pigment epithelial cells.
نویسندگان
چکیده
Na,K-ATPase regulates a variety of transport functions in epithelial cells. In cultures of human retinal pigment epithelial (RPE) cells, inhibition of Na,K-ATPase by ouabain and K(+) depletion decreased transepithelial electrical resistance (TER) and increased permeability of tight junctions to mannitol and inulin. Electrophysiological studies demonstrated that the decrease in TER was due to an increase in paracellular shunt conductance. At the light microscopy level, this increased permeability was not accompanied by changes in the localization of the tight junction proteins ZO-1, occludin, and claudin-3. At the ultrastructural level, increased tight junction permeability correlated with a decrease in tight junction membrane contact points. Decreased tight junction membrane contact points and increased tight junction permeability were reversible in K(+)-repletion experiments. Confocal microscopy revealed that in control cells, Na,K-ATPase was localized at both apical and basolateral plasma membranes. K(+) depletion resulted in a large reduction of apical Na,K-ATPase, and after K(+) repletion the apical Na,K-ATPase recovered to control levels. These results suggest a functional link exists between Na,K-ATPase and tight junction function in human RPE cells.
منابع مشابه
Na-K-ATPase regulates tight junction permeability through occludin phosphorylation in pancreatic epithelial cells.
Tight junctions are crucial for maintaining the polarity and vectorial transport functions of epithelial cells. We and others have shown that Na-K-ATPase plays a key role in the organization and permeability of tight junctions in mammalian cells and analogous septate junctions in Drosophila. However, the mechanism by which Na-K-ATPase modulates tight junctions is not known. In this study, using...
متن کاملNa,K-ATPase and epithelial tight junctions.
Tight junctions are unique organelles in polarized epithelial and endothelial cells that regulate the flow of solutes and ions across the epithelial barrier. The structure and functions of tight junctions are regulated by a wide variety of signaling and molecular mechanisms. Several recent studies in mammals, drosophila, and zebrafish reported a new role for Na,K-ATPase, a well-studied ion tran...
متن کاملPlasticity in epithelial cell phenotype: modulation by expression of different cadherin cell adhesion molecules
A primary function of cadherins is to regulate cell adhesion. Here, we demonstrate a broader function of cadherins in the differentiation of specialized epithelial cell phenotypes. In situ, the rat retinal pigment epithelium (RPE) forms cell-cell contacts within its monolayer, and at the apical membrane with the neural retina; Na+, K(+)-ATPase and the membrane cytoskeleton are restricted to the...
متن کاملImmortalization of polarized rat retinal pigment epithelium.
Rat retinal pigment epithelial (RPE) cells were immortalized by infection with a temperature-sensitive tsA SV40 virus and following cloning and selection for epithelial properties the polarized RPE-J cell line was obtained. At the permissive temperature of 33 degrees C, RPE-J cells behave as an immortalized cell line. When RPE-J cells are grown on nitrocellulose filters coated with a thin layer...
متن کاملOccludin independently regulates permeability under hydrostatic pressure and cell division in retinal pigment epithelial cells.
PURPOSE The aim of this study was to determine the function of the tight junction protein occludin in the control of permeability, under diffusive and hydrostatic pressures, and its contribution to the control of cell division in retinal pigment epithelium. METHODS Occludin expression was inhibited in the human retinal pigment epithelial cell line ARPE-19 by siRNA. Depletion of occludin was c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 284 6 شماره
صفحات -
تاریخ انتشار 2003